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Effective transformation-based variable selection under
two-fold subarea models in small area estimation
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ABSTRACT

We present a simple yet effective variable selection method for the two-fold nested
subarea model, which generalizes the widely-used Fay-Herriot area model. The two-
fold subarea model consists of a sampling model and a linking model, which has a
nested-error model structure but with unobserved responses. To select variables under
the two-fold subarea model, we first transform the linking model into a model with the
structure of a regular regression model and unobserved responses. We then estimate
an information criterion based on the transformed linking model and use the estimated
information criterion for variable selection. The proposed method is motivated by the
variable selection method of Lahiri and Suntornchost (2015) for the Fay-Herriot model
and the variable selection method of Li and Lahiri (2019) for the unit-level nested-error
regression model. Simulation results show that the proposed variable selection method
performs significantly better than some naive competitors, especially when the variance
of the area-level random effect in the linking model is large.
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1. Introduction

Small area estimation (SAE) aims to provide reliable estimates of some parameters

of interest, such as means or totals, of subpopulations (areas). Sample surveys are

usually carried out in some or all areas to collect unit-level data and design-based direct

estimators of the parameters are obtained. A common practical issue in SAE is that the

design-based direct estimators are usually unreliable because the sampled areas typically

have small sample sizes. It is advantageous to use model-based approaches, which can

incorporate auxiliary information through linking models to provide reliable estimates of

small area parameters (Rao and Molina, 2015). In general, there are two types of small

area models, unit-level models and area-level models. We focus on area-level models.

The celebrated Fay-Herriot (FH) area model (Fay and Herriot, 1979) combines direct

estimators and auxiliary variables using a linking model to obtain accurate estimates of

small area parameters. Let θi be the parameter of interest of a sampled area i = 1, . . . ,m
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and xi be an associated covariate vector. Let yi be a direct estimator of θi, obtained

using unit-level data. The FH model assumes that

yi = θi + ei, (1)

θi = xᵀi β +ui, (2)

where β is a parameter vector, ui’s are independent and identically distributed (iid)

random effects following N(0,σ2
u ) with unknown σ2

u , ei’s are independent (ind) sampling

errors following N(0,Ψi) with known sampling variance Ψi, and ui’s are independent

of ei’s. In practice, Ψi is obtained by smoothing the direct estimates of the sampling

variances, based on the unit level data, and then treating the smoothed estimates as the

true sampling variances. Model (1) is known as the “sampling model” and model (2)

is called the “linking model”. The empirical best linear unbiased prediction (EBLUP)

estimator of θi for a sampled area is given by θ̂i = γ̂iyi+(1− γ̂i)x
ᵀ
i β̂ , where γ̂i = σ̂2

u /(Ψi+

σ̂2
u ), β̂ is the best linear unbiased estimator of β and σ̂2

u is the maximum likelihood

(ML) estimator or the restricted ML (REML) estiamtor or a method of moments (MM)

estimator of σ2
u (Rao and Molina, 2015, Chapter 6). The EBLUP estimator of θi is a

weighted sum of the direct estimator yi and the so-called “synthetic estimator” xᵀi β̂ .

When multiple auxiliary variables are available, selecting a parsimonious model that

fits the data well is especially important for attaining high estimation accuracy for small

area parameters. Han (2013) used a conditional Akaike information criterion (cAIC) to

select variables under the FH model. Lahiri and Suntornchost (2015) proposed a variable

selection method for the FH model by estimating information criteria under the linking

model (2). For variable selection under the unit-level nested-error regression (NER)

model (Rao and Molina, 2015, Section 4.3), Meza and Lahiri (2005) proposed a method

based on the Fuller-Battese transformation (Fuller and Battese, 1973), which requires

estimated values of the variance parameters. Li and Lahiri (2019) used a parameter-free

transformation method to avoid estimating the variance parameters.

In many applications, data for the subpopulations of interest are collected using a

two-fold setup. First, some areas, e.g. states, are sampled. Then, a sample of subareas,

e.g. counties, is further selected from each sampled area. Unit-level data then are

collected from the sampled subareas. The goal is to estimate a subarea parameter θi j

where i denotes an area and j denotes a subarea. An example of this nested two-fold

setup is given by Mohadjer et al. (2012). In the two-fold case, subareas within an area are

likely to share some common features and hence the variables of interest are correlated

among those subareas. Naively applying the FH model to the subarea-level data will not

capture the correlation.

The two-fold subarea model generalizes the FH model and is tailored for the two-fold

setup. Suppose that m areas, labelled as i = 1, . . . ,m, are sampled from M areas, and

for the ith sampled area, ni subareas, labelled as j = 1, . . . ,ni, are further sampled from

Ni subareas. Let yi j, i = 1, . . . ,m and j = 1, . . . ,ni, be design-unbiased direct estimators
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of θi j, and xi j be associated covariate vectors. The two-fold subarea model consists of

Sampling model: yi j = θi j + ei j, (3)

Linking model: θi j = xᵀi jβ + vi +ui j, (4)

where ei j
ind∼ N(0,Ψi j) with known sampling variances Ψi j, β is a regression parameter

vector, vi
iid∼ N(0,σ2

v ) with unknown σ2
v , and ui j

iid∼ N(0,σ2
u ) with unknown σ2

u . The

random errors ei j, vi and ui j are assumed to be independent. Different from the FH

model, the linking model (4) under the two-fold subarea model has an area-level random

effect vi, which pools information across subareas within an area. Torabi and Rao (2014)

developed the theory of EBLUP estimators under the two-fold subarea model.

Despite the fact that the two-fold subarea model is gaining popularity, little research

has been conducted on variable selection under the model. In this paper, we propose

a simple yet effective variable selection method for the two-fold subarea model, which

combines and extends the variable selection method of Lahiri and Suntornchost (2015)

for the FH model and the variable selection method of Li and Lahiri (2019) for the

unit-level NER model.

The paper is organized as follows. In Section 2, we give a detailed review of some

variable section methods for the FH model. In Section 3, we describe the proposed

variable selection method for the two-fold subarea model. Simulation results for assessing

the performance of the proposed method are provided in Section 4. Concluding remarks

are given in Section 5. Proofs and additional simulation results are included in the

Appendix.

2. Variable selection under the FH model

2.1. The Lahiri-Suntornchost method

Lahiri and Suntornchost (2015) developed a simple bias-correction method that can

activate multiple information criteria for regular linear regression, including Akaike infor-

mation criterion (AIC), Bayesian information criterion (BIC), Mallows’ Cp and adjusted

R2, to be used for variable selection under the FH model. Note that the linking model

(2) takes the form of a regular regression model although the response values θi are

unobserved. A simple idea is to estimate an information criterion, for example BIC,

for the linking model (2) and then use the estimated information criterion to carry out

variable selection under the FH model.

To achieve this, Lahiri and Suntornchost (2015) proposed to estimate MSEθ ··=
1

m−p θᵀ
(Im − P)θ , where Im is the m by m identity matrix, θ = (θ1 . . . θm)

ᵀ
, P =

X(XᵀX)
−1Xᵀ

, X = (x1 . . . xm)
ᵀ
, and p is the length of β under the FH model. The

estimator of MSEθ is given by

̂MSEθ = MSEy−Ψw,

where MSEy =
1

m−p yᵀ(Im −P)y, y = (y1 . . . ym)
ᵀ
, Ψw = 1

m−p ∑m
i=1(1− hii)Ψi, and hii =
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xᵀi (X
ᵀX)

−1xi. Observing that the BIC for the linking model (2) is a continuous function

of MSEθ , i.e. BIC = m log
{(

m− p
)

MSEθ /m
}
+ p logm, one can estimate the BIC by

plugging in ̂MSEθ ,

B̂IC = m log
{(

m− p
)
̂MSEθ/m

}
+ p logm.

Other information criteria, including AIC, Mallows’ Cp and adjusted R2 for the linking

model (2), can be estimated similarly. Lahiri and Suntornchost (2015) also proposed a

modification to ̂MSEθ that leads to a strictly positive estimator of MSEθ .

Lahiri and Suntornchost (2015) commented that the goal of their method is to

make simple adjustments to the regression packages available to data users, and their

objective is not to decide on the best possible regression model selection criterion, but to

suggest ways to adjust a data user’s favourite model selection criterion. Indeed, given the

conceptual and computational simplicity of the method and wide availability of software

packages for the regular regression model, this is a method that is likely to be adopted

by users.

2.2. The cAIC method

Han (2013) adapted the cAIC method for linear mixed-effects models (Vaida and

Blanchard, 2005) to select variables under the FH model. Han (2013) showed that the

cAIC for the FH model is given by

cAIC =−2log fc(y|θ̂)+2Φ0,

where θ̂ = (θ̂1 . . . θ̂m)
ᵀ
, θ̂i is the EBLUP of θi, fc(y|θ̂) is the conditional density of y

given θ̂ , and Φ0 = ∑m
i=1(∂ θ̂i/∂yi). When comparing submodels, the submodel with the

smallest cAIC value is chosen.

In the expression of the EBLUP θ̂i, estimated model parameters β and σ2
u are re-

quired. As a consequence, different estimators of model parameters lead to different

expressions for the penalty term Φ0. Han (2013) derived the analytical expressions of

Φ0 for three frequently used estimators of model parameters: the unbiased quadratic

(UQ) estimator, the REML estimator, and the ML estimator. In all three cases, the

penalty term Φ0 has complicated expressions. Compared to the cAIC method, the

Lahiri-Suntornchost (2015) method would be more attractive to data users because of

its simplicity.

3. Variable selection under two-fold subarea model

We now turn to variable selection under the two-fold subarea model. The two-fold

subarea model defined by (3) and (4) can be rewritten in vector form as

Sampling model: yi = θ i + ei, (5)

Linking model: θ i = Xiβ + τ i (6)
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for i = 1, . . . ,m, where yi = (yi1 . . . yini)
ᵀ
, Xi = (xi1 . . . xini)

ᵀ
, θ i = (θi1 . . . θini)

ᵀ
, ei =

(ei1 . . . eini)
ᵀ
, and τ i = vi�ni +ui with �k denoting a k-vector of 1s and ui =(ui1 . . . uini)

ᵀ
.

We have τ i ∼ N(0,Σi), where

Σi = σ2
v �ni�

ᵀ
ni
+σ2

u Ini . (7)

The key difference between the linking model (6) and the linking model (2) under the

FH model is that the random effect τ i in (6) does not have a diagonal structure. If the

covariance matrix Σi of τ i can be transformed to have a diagonal structure with equal

diagonal entries, then the Lahiri-Suntornchost method for the FH model can be applied.

Our proposed method is based on this simple idea and is outlined in two steps below.

First, we linearly transform the linking model (6) into a model with iid random errors.

Specifically, for each i= 1, . . . ,m, we find a non-random matrix Ai such that τ∗i ··=Aiτ i has

a diagonal covariance matrix with all diagonal entries equalling some positive constant

c across i, and then transform the linking model (6) into

θ ∗
i = X∗

i β + τ∗i , (8)

where θ ∗
i = Aiθ i and X∗

i = AiXi. Model (8) takes the form of a regular regression model

but with unknown θ ∗
i , which is similar to the linking model (2) under the FH model.

Second, we estimate information criteria for the transformed linking model (8) using

a method similar to the Lahiri-Suntornchost (2015) method for the FH model. The

estimated information criteria then can be used for model selection.

In what follows, we give two transformation methods in subsection 3.1, and then

describe the proposed method of estimating information criteria in subsection 3.2.

3.1. Transformation

3.1.1 The parameter-free Lahiri-Li transformation

The purpose of the linear transformation Ai is to make Var(τ∗i ) = AiΣiA
ᵀ
i a diagonal

matrix with constant diagonal entries. Ideally, the transformation matrix Ai should not

depend on any unknown parameters. Lahiri and Li (2009) proposed a parameter-free

transformation method, which can achieve this purpose, and Li and Lahiri (2019) used

that transformation method for variable selection under the unit-level NER model. The

idea of the transformation is as follows. By (7),

Var(τ∗i ) = AiΣiA
ᵀ
i = σ2

v (Ai�ni)(Ai�ni)
ᵀ
+σ2

u AiA
ᵀ
i .

Hence, to make a constant-diagonal structure for Var(τ∗i ), it suffices to find an Ai such

that (a) Ai�ni = 0, and (b) AiA
ᵀ
i is a diagonal matrix with diagonal entries being constant

across i = 1, . . . ,m. The conditions (a) and (b) do not involve any parameter, so any

matrix Ai satisfying them can be parameter free. Note that the rank of such an Ai is at

most ni −1 because of the linear constraint (a).

Particular examples of parameter-free Ai that satisfy the conditions (a) and (b) were

given by Lahiri and Li (2009) and Li and Lahiri (2019), but no general method for
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finding parameter-free Ai was suggested. Here, we complement their examples by giving

a general method to construct a desired Ai as follows.

Step 1: Fix a set of ni−1 linearly independent vectors of length ni, denoted b1, . . . ,bni−1,

which satisfies bᵀk�ni = 0 for k = 1, . . . ,ni −1. For example, one can take bk to be

the vector with kth entry being 1, the last entry being −1 and all the other entries

being 0, or, the vector with kth entry being 1, the (k+1)th entry being −1 and

all the other entries being 0.

Step 2: Apply the Gram-Schmidt process to b1, . . . ,bni−1 to obtain a set of orthogonal

vectors a1, . . . ,ani−1 with a1 = b1 and ak = bk −∑k−1
l=1 Projal

(bk) for k = 2, . . . ,ni−1,

where Projy(x) ··= xᵀy
yᵀy y is the projection of vector x onto the line spanned by y.

Take Ai =
(

a1
‖a1‖ . . .

ani−1

‖ani−1‖
)ᵀ

, where ‖ · ‖ is the Euclidean norm.

The Ai constructed this way is parameter free and satisfies the requirements (a) and (b),

and correspondingly AiA
ᵀ
i = Ini−1.

In spite of being parameter free, this transformation has two drawbacks: (i) Since

the rank of Ai is ni − 1 instead of ni, each area i loses one degree of freedom after

transformation, which is undesirable when the number of sampled areas, m, is large.

(ii) After transformation, the intercept term, if included in the original model, will be

removed because of the requirement (a). Hence, this transformation method cannot

be used if the intercept is to be selected. In practice, this is not an issue because the

intercept is usually included in the model and only the other variables are to be selected.

Moreover, transformation matrix that satisfies (a) and (b) is not unique, although we

do not find that using different parameter-free transformation matrices affects variable

selection results significantly. Overall, being simple and parameter-free is of practical

importance and hence the Lahiri-Li transformation method is likely to be favoured by

most data users.

3.1.2 The Fuller-Battese transformation

If not restricted to a parameter-free transformation, a straightforward idea to make

Var(τ∗i ) =AiΣiA
ᵀ
i a diagonal matrix with constant diagonal entries is to take Ai = dΣ−1/2

i ,

where Σ−1/2
i is the positive definite square-root matrix of Σ−1

i and d is a non-zero

constant. Choosing d = σu and working out Σ−1/2
i , we get

Ai = Ini −
1

ni

(
1−

√
1−ρ

1+(ni −1)ρ

)
�ni�

ᵀ
ni
,

where ρ =σ2
v /(σ2

v +σ2
u ), which depends on the model parameters σ2

v and σ2
u . This is the

same as the transformation used by Fuller and Battese (1973). Under the transformation,

Var(τ∗i ) = σ2
u Ini .

In practice, ρ has to be estimated, which is undesirable. One can use the estimating

equation (EE) method by Torabi and Rao (2014) or the ML method to estimate ρ
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under the two-fold subarea model. Meza and Lahiri (2005) used the Fuller-Battese

transformation for variable selection under the unit-level NER model.

3.2. Estimating information criteria

The transformed linking model (8) is a regular regression model with unobserved

responses θ ∗
i . We now adapt the Lahiri-Suntornchost (2015) method to estimate AIC,

BIC and Mallows’ Cp under model (8).

Define the mean sum of squares of errors (MSE) of (8) as

MSEθ∗ =
1

n∗ − p
θ ∗ᵀ(In∗ −P∗)θ ∗,

where θ ∗ =
(
θ ∗

1
ᵀ
. . . θ ∗

m
ᵀ)ᵀ

, P∗ = X∗(X∗ᵀX∗)−1
X∗ᵀ with X∗ =

(
X∗

1
ᵀ
. . . X∗

m
ᵀ)ᵀ

, n∗ is the

length of θ ∗, and p is the length of β . For a submodel of (8) with ps covariates, the

AIC, BIC and Mallows’ Cp are given, respectively, by

AIC(s) = n∗ log
{(

n∗ − ps
)

MSE
(s)
θ∗ /n∗

}
+2ps,

BIC(s) = n∗ log
{(

n∗ − ps
)

MSE
(s)
θ∗ /n∗

}
+ ps log(n∗),

C(s)
p =

(
n∗ − ps

)
MSE

(s)
θ∗ /MSEθ∗ +2ps −n∗,

where MSE
(s)
θ∗ is the MSE from the submodel. Since θ ∗ is unknown, the above informa-

tion criteria cannot be calculated. To estimate them, we first propose an estimator of

MSEθ∗ .

Transform the direct estimator vector yi using the same transformation matrix Ai

by letting y∗i = Aiyi and y∗ =
(
y∗1

ᵀ
. . . y∗m

ᵀ)ᵀ
. Define MSEy∗ =

1
n∗−p y∗ᵀ(In∗ −P∗)y∗. We

propose to estimate MSEθ∗ by

̂MSEθ∗ = MSEy∗ − 1

n∗ − p
tr
{
(In∗ −P∗)AVeAᵀ}

, (9)

where A = diag(A1, . . . ,Am) and Ve = diag(Ψ11, . . . ,Ψmnm). The second term on the right

hand side of the above equation can be viewed as a bias-correction term. A simple

modification to the MSE estimator as used by Lahiri and Suntornchost (2015) can be

applied to ̂MSEθ∗ to ensure a strictly positive estimator of MSEθ∗ .

Theorem 1. Suppose that the sampling variances Ψi j are bounded for all i and j, and
ni ≥ 2 for all i. Then, as the number of areas m → ∞,

̂MSEθ∗ = MSEθ∗ +op(1).

The proof of Theorem 1 is given in Appendix A. Estimators of AIC, BIC and Mallows’

Cp are obtained by plugging ̂MSEθ∗ into their corresponding expressions. Since all these

information criteria are continuous functions of MSEθ∗ , by the continuous mapping

theorem (van der Vaart, 1998, Theorem 2.3), the errors of the estimated information
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criteria are also of op(1).

To carry out variable selection, one can choose one of the above information criteria

and estimate its values for a set of submodels under consideration. The submodel with

the smallest estimated information criterion value is selected as the final model.

4. Simulation study

We conducted a simulation study to assess the performance of the proposed variable

selection method under the two-fold subarea model. In the simulation, the number of

sampled areas m is set to 30. The number of sampled subareas is set to 8 for the first

10 sampled areas, 5 for the next 15 sampled areas, and 10 for the last 5 sampled areas.

The sampling standard deviation
√

Ψi j is generated from Unif(0.5,1.5). We set σu = 2

and consider a few settings for the standard deviation of the area-level random effect

with σv = 2, 3.5, 5, 6.5 and 8. In the linking model, we consider an intercept and eight

covariates with

xi j,1 ∼ Log-normal(0.3,0.5), xi j,2 ∼ Gamma(1.5,2), xi j,3 ∼ N(0,0.8),

xi j,4 ∼ N(1,1.5), xi j,5 ∼ Gamma(0.6,10), xi j,6 ∼ Beta(0.5,0.5),

xi j,7 ∼ Unif(1,3), xi j,8 ∼ Poisson(1.5),

where xi j,k represents the value of the kth covariate for the ith area and jth subarea, Log-

normal(μ,σ) denotes the log-normal distribution with mean μ and standard deviation σ
on the log-scale, Gamma(α,β ) denotes the gamma distribution with shape parameter α
and rate parameter β , Beta(κ,γ) denotes the beta distribution with shape parameters κ
and γ, Unif(a, b) denotes the uniform distribution on the interval (a, b), and Poisson(λ )
denotes the Poisson distribution with mean parameter λ .

We consider two settings for the true underlying model. In the first setting (Set-

ting I), the true regression parameter value is fixed to β = (2,0,0,4,0,8,0,0,0)
ᵀ
. The

corresponding true model is the submodel with an intercept and covariates xi j,3 and

xi j,5. In the second setting (Setting II), the true regression parameter value is set to

β = (2,3,0,4,0,8,0,1,0)
ᵀ
, which corresponds to the true model with an intercept and

covariates xi j,1, xi j,3, xi j,5, and xi j,7. When selecting variables, the intercept term is al-

ways included in the model, and we compare all submodels defined by inclusion/exclusion

of xi j,k, k = 1, . . . ,8.

When generating data, the covariates are generated first and fixed throughout all

simulation replications. Then in each simulation replication, yi, i = 1, . . . ,m, are gener-

ated from the two-fold subarea model using the above settings. The total number of

simulation replications is set to 10000.

We use the proposed method to select covariates by comparing all submodels defined

by the subsets of the eight covariates. We consider the proposed method using the

parameter-free Lahiri-Li transformation (TWOFLL), the Fuller-Battese transformation

with the true ρ value (TWOFFB(ρ0)), that with the MLE of ρ (TWOFFB(ρ̂mle)), and

that with the estimated ρ based on the estimating equation method of Torabi and
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Rao (2014) (TWOFFB(ρ̂ee)). For comparison, we consider three naive competitors, the

method of Lahiri and Suntornchost (2015) for the FH model fitted naively to the data

(Naive 1), information criterion approach for the regular linear regression model fitted

naively to the data (Naive 2), and the cAIC method of Han (2013) for the FH model

fitted naively to the data (Naive cAIC). Note that different information criteria can be

used with Naive 1 and Naive 2 methods, but Naive 3 uses cAIC only.

The simulation results using BIC for variable selection under Setting I of the underly-

ing model are reported in Table 1. All versions of the proposed method have significantly

Table 1: Percentage (%) of selecting the true model using BIC;
True model, Setting I: β = (2,0,0,4,0,8,0,0,0)

ᵀ

Method
σv

2 3.5 5 6.5 8
TWOFLL 76.98 77.00 76.06 76.52 77.54

TWOFFB(ρ0) 78.92 78.58 77.74 77.94 78.46
TWOFFB(ρ̂mle) 78.12 78.16 77.02 77.62 78.46
TWOFFB(ρ̂ee) 78.56 78.34 77.22 76.52 78.70

Naive 1 71.42 49.92 29.48 18.80 11.92
Naive 2 73.90 49.52 29.08 18.34 11.66

higher percentages of selecting the true model in all cases. When the standard deviation

σv of the area-level random effect increases, all versions of the proposed method exhibit

stable rate of selecting the true model at approximately 77% level, while both naive

methods show dramatic decay in performance from approximately 72% rate of selecting

the true model when σv = 2 to nearly 12% when σv = 8. This suggests that when there

is a strong area-level effect, as it commonly happens in practice, the proposed method

is a clear choice over the naive ones. The proposed method based on the parameter-free

Lahiri-Li transformation and that based on the Fuller-Battese transformation perform

equally well. Moreover, using an estimated ρ instead of the true value of ρ in the Fuller-

Battese transformation does not adversely affect the performance of variable selection

in this case.

The simulation results using AIC and Naive cAIC for variable selection under Setting

I are given in Table 2. Compared to BIC, AIC yields lower percentage of selecting the

true model for all the methods. However, the comparison between the proposed method

and the naive methods is similar to the case using BIC. All versions of the proposed

method perform similarly and give stable results for different values of σv. The naive

methods, on the other hand, have poorer performance, and their performance drops

considerably as σv increases. The Naive cAIC method performs worse than the Naive 1

and Naive 2 methods, likely because the cAIC has a complicated expression.

The simulation results using Mallows’ Cp for variable selection under Setting I are

reported in Table 3. These results are similar to those using AIC, and the same conclusion

can be drawn: the proposed method has stable performance for different values of σv

and it outperforms the Naive methods in all cases.

The simulation results for variable selection using BIC, AIC/cAIC and Mallows’ Cp
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Table 2: Percentage (%) of selecting the true model using AIC or
Naive cAIC; True model, Setting I: β = (2,0,0,4,0,8,0,0,0)

ᵀ

Method
σv

2 3.5 5 6.5 8
TWOFLL 29.92 28.86 28.12 29.26 30.18

TWOFFB(ρ0) 30.30 28.52 28.52 29.32 29.94
TWOFFB(ρ̂mle) 29.94 28.16 28.30 29.14 29.90
TWOFFB(ρ̂ee) 30.02 28.52 28.74 29.56 30.46

Naive 1 27.40 24.94 19.88 15.36 12.82
Naive 2 29.92 26.20 20.04 15.52 12.92

Naive cAIC 22.90 19.18 16.50 12.51 11.44

Table 3: Percentage (%) of selecting the true model using Mallows’ Cp;
True model, Setting I: β = (2,0,0,4,0,8,0,0,0)

ᵀ

Method
σv

2 3.5 5 6.5 8
TWOFLL 31.18 29.98 29.52 30.68 31.48

TWOFFB(ρ0) 31.60 29.76 29.62 30.88 31.06
TWOFFB(ρ̂mle) 31.40 29.58 29.50 30.46 31.34
TWOFFB(ρ̂ee) 31.40 29.82 29.82 30.84 31.58

Naive 1 28.40 25.92 20.70 15.84 13.24
Naive 2 31.02 27.22 21.20 16.30 13.22

under Setting II of the underlying model are reported in Table 4, Table 5 and Table 6,

respectively, in Appendix B. The comparison among different methods is similar to that

under Setting I. It is worth noting that, compared to Setting I, although more covari-

ates are included in the true model under Setting II, the performance gap between the

proposed method and the naive methods is larger, and the performance of the naive

methods drops quicker as σv increases when using AIC, cAIC or Mallows’ Cp.

5. Concluding remarks

We proposed a simple transformation-based variable selection method for the two-

fold subarea model. This method is a blend of the variable selection method of Lahiri

and Suntornchost (2015) for the FH model and the variable selection method of Li

and Lahiri (2019) for the unit-level NER model. The proposed method can be used

with the parameter-free Lahiri-Li (Lahiri and Li, 2009) transformation or the Fuller-

Battese transformation which requires estimating model parameters σ2
v and σ2

u . The

performance of the proposed method using two different transformations is found to be

comparable and substantially better than some naive competitors, especially when the

variance of the area-level random effect is large. In practice, using the proposed method
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with the parameter-free Lahiri-Li transformation is preferred because of the simplicity of

the transformation.
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APPENDICES

A. Proof of Theorem 1

The idea of the proof is to show that

E
(
̂MSEθ∗ |θ ∗)= MSEθ∗ (10)

and

E
{

Var
(
̂MSEθ∗ |θ ∗)}→ 0 as m → ∞. (11)

Then, by (10) and Markov’s inequality, for any given ε > 0, we have

Pr
(∣∣̂MSEθ∗ −MSEθ∗

∣∣≥ ε
∣∣∣θ ∗

)
= Pr

(∣∣̂MSEθ∗ −E
(
̂MSEθ∗ |θ ∗)∣∣≥ ε

∣∣∣θ ∗
)

≤ Var
(
̂MSEθ∗ |θ ∗)

ε2
.

Taking expectation on both sides of the above inequality and applying (11) gives

Pr
(∣∣̂MSEθ∗ −MSEθ∗

∣∣≥ ε
)
≤ E

{
Var

(
̂MSEθ∗ |θ ∗)}
ε2

→ 0

as m → ∞, which proves the claimed. To complete the proof, we show (10) and (11) in

the sequel.

Lemma 1. Let C and D be real-valued matrices of the same order, then

tr
{(

CᵀD
)2}≤ tr

(
CᵀCDᵀD

)
and {

tr
(
CᵀD

)}2 ≤ tr
(
CᵀC

)
tr
(
DᵀD

)
.

Lemma 1 is Theorem 11.2 of Magnus and Neudecker (2019). See a proof therein.

We now prove (10). By the sampling model (5) and the definite of y∗, we have

y∗ = θ ∗+ e∗, where e∗ =
(
e∗1

ᵀ
. . . e∗m

ᵀ)ᵀ
with e∗i = Aiei for i = 1, . . . ,m. This gives

MSEy∗ =
y∗ᵀ(In∗ −P∗)y∗

n∗ − p
θ ∗ᵀ(In∗ −P∗)θ ∗+2θ ∗ᵀ(In∗ −P∗)e∗+ e∗ᵀ(In∗ −P∗)e∗

n∗ − p
.
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Because e∗ is independent of θ ∗, we have

E
(
MSEy∗ |θ ∗)= 1

n∗ − p

[
θ ∗ᵀ(In∗ −P∗)θ ∗+2θ ∗ᵀ(In∗ −P∗)E(e∗)+E

{
e∗ᵀ(In∗ −P∗)e∗

}]
= MSEθ∗ +

1

n∗ − p

[
2θ ∗ᵀ(In∗ −P∗)E(e∗)+E

{
e∗ᵀ(In∗ −P∗)e∗

}]
.

Put e=
(
eᵀ1 . . . eᵀm

)ᵀ
. Then E(e) = 0, Var(e) =Ve and e∗ =Ae, where A and Ve are defined

just before Theorem 1. Hence, E(e∗) = 0 and Var(e∗) = AVeAT , which implies that

E
{

e∗ᵀ(In∗ −P∗)e∗
}
= tr

{
(In∗ −P∗)AVeAᵀ}

by a standard result in multivariate statistics.

This leads to

E
(
MSEy∗ |θ ∗)= MSEθ∗ +

1

n∗ − p
tr
{
(In∗ −P∗)AVeAᵀ}

.

Then by the definition, (9), of ̂MSEθ∗ , equation (10) is true.

Finally, we prove (11). With simple algebra, we obtain the following decomposition:

Var
(
̂MSEθ∗ |θ ∗)= 1

(n∗ − p)2
(T1 +T2 +T3), (12)

where

T1 = Var
{

e∗ᵀ(In∗ −P∗)e∗
}
,

T2 = 4θ ∗(In∗ −P∗)E
{

e∗e∗ᵀ(In∗ −P∗)e∗
}
,

T3 = 4E
[{

θ ∗ᵀ(In∗ −P∗)e∗
}2 ∣∣ θ ∗

]
.

Since e ∼ N(0,Ve), we have e∗ ∼ N(0,AVeAᵀ
). Then by a standard result for multivariate

normal distribution, we have E
{

e∗e∗ᵀ(In∗ −P∗)e∗
}
= 0, which gives T2 = 0. In what

follows, we derive upper bounds for T1 and T3.

By normality of e∗, we have

T1 = 2tr
[{

(In∗ −P∗)AVeAᵀ}2
]
.

Noting that In∗ −P∗ is symmetric and idempotent, and AVeAᵀ
is symmetric, by Lemma

1, we have

T1 ≤ 2tr
{
(In∗ −P∗)(AVeAᵀ

)2
}
= 2tr

{
(AVeAᵀ

)2
}
−2tr

{
P∗(AVeAᵀ

)2
}

Since P∗ is symmetric and idempotent, by the cyclic property of trace, we have

tr
{

P∗(AVeAᵀ
)2
}
= tr

{
P∗2(AVeAᵀ

)2
}
= tr

{
P∗(AVeAᵀ

)2P∗
}
= tr

{
QᵀQ

}
≥ 0,
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where Q = (AVeAT )P∗. Therefore,

T1 ≤ 2tr
{
(AVeAᵀ

)2
}
.

Noting that AVeAᵀ
= diag

{(
A1Ve1

Aᵀ
1

)
, . . . ,

(
AmVemAᵀ

m
)}

where Vei = diag(Ψi1, . . . ,Ψini)

for i = 1, . . . ,m, we have

tr
{
(AVeAᵀ

)2
}
=

m

∑
i=1

tr
{(

AiVeiA
ᵀ
i
)2
}
=

m

∑
i=1

tr
{(

VeiA
ᵀ
i Ai

)2
}
.

By Lemma 1, we further have

tr
{(

VeiA
ᵀ
i Ai

)2
}
≤ tr

{
V 2

ei
(Aᵀ

i Ai)
2
}
= tr

{
Vei(A

ᵀ
i Ai)

2Vei

}
.

Let λi be the largest eigenvalue of (Aᵀ
i Ai)

2
. By an inequality about quadratic forms,

we have that the jth diagonal entry of Vei(A
ᵀ
i Ai)

2Vei is bounded by λiΨ2
i j. For both

the parameter-free Lahiri-Li transformation based on the proposed procedure using the

Gram-Schmidt process and the Fuller-Battese transformation, it is easy to show that

λi = 1. Then, since Ψi j is bounded by some constant Ψ0 for all i and j, we have

tr
{(

VeiA
ᵀ
i Ai

)2
}
≤

ni

∑
j=1

λiΨ2
i j ≤ niΨ2

0.

Therefore,

T1 ≤ 2tr
{
(AVeAᵀ

)2
}
≤ 2

m

∑
i=1

niΨ2
0 = 2nΨ2

0. (13)

We now turn to T3. Because e∗ is independent of θ ∗ and E(e∗) = 0, we have

T3 = 4E
[{

θ ∗ᵀ(In∗ −P∗)e∗
}2 ∣∣ θ ∗

]
.

= 4θ ∗ᵀ(In∗ −P∗)E
(
e∗e∗ᵀ

)
(In∗ −P∗)θ ∗

= 4θ ∗ᵀ(In∗ −P∗)
(
AVeA

)
(In∗ −P∗)θ ∗.

Observing that T3 = tr(T3), we further have

T3 = 4tr
{

θ ∗ᵀ(In∗ −P∗)
(
AVeA

)
(In∗ −P∗)θ ∗}

= 4tr
{(

AVeA
)
(In∗ −P∗)θ ∗θ ∗ᵀ(In∗ −P∗)

}
.

Then, by Lemma 1 and (13), we get

T3 ≤ 4

√
tr
{
(AVeAᵀ)2

}
tr
{
(UUᵀ)2

}≤ 4
√

nΨ0

√
tr
{
(UUᵀ)2

}
,
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where U = (In∗ −P∗)θ ∗. In addition, by the cyclic property of trace, tr
{
(UUᵀ

)2
}
=

tr
{
(UᵀU)2

}
= (UᵀU)2. Hence

T3 ≤ 4
√

nΨ0(U
ᵀU) = 4

√
nΨ0

{
θ ∗ᵀ(In∗ −P∗)θ ∗}. (14)

Combining (12), (13), (14) and the fact that T2 = 0, we get

Var
(
̂MSEθ∗ |θ ∗)= 1

(n∗ − p)2
(T1 +T2 +T3)

≤ n
(n∗ − p)2

2Ψ2
0 +

√
n

(n∗ − p)2
4Ψ0

{
θ ∗ᵀ(In∗ −P∗)θ ∗}.

Therefore,

E
{

Var
(
̂MSEθ∗ |θ ∗)}≤ n

(n∗ − p)2
2Ψ2

0 +

√
n

(n∗ − p)2
4Ψ0 E

{
θ ∗ᵀ(In∗ −P∗)θ ∗}.

Since θ ∗ is normally distributed with covariance matrix σ2
u In∗ , In∗ −P∗ is a symmetric

idempotent matrix and E
{
(In∗ −P∗)θ ∗}= 0, 1

σ2
u

θ ∗ᵀ(In∗ −P∗)θ ∗ has a chi-square distribu-

tion with n∗ − p degrees of freedom, and so E
{

θ ∗ᵀ(In∗ −P∗)θ ∗}= (n∗ − p)σ2
u . Further

recall that n∗ = n−m for the Lahiri-Li transformation, n∗ = n for the Fuller-Battese

transformation, and ni ≥ 2. Then, under both transformations, we have n
(n∗−p)2 → 0 and

√
n

(n∗−p) → 0 as m → ∞. With the above results, we conclude that

E
{

Var
(
̂MSEθ∗ |θ ∗)}≤ n

(n∗ − p)2
2Ψ2

0 +

√
n

n∗ − p
4Ψ0σ2

u → 0

as m → ∞, and hence Theorem 1 is proved.

B. Simulation results under Setting II of the underlying model

Table 4: Percentage (%) of selecting the true model using BIC;
True model, Setting II: β = (2,3,0,4,0,8,0,1,0)

ᵀ

Method
σv

2 3.5 5 6.5 8
TWOFLL 71.95 72.46 72.60 72.54 72.36

TWOFFB(ρ0) 73.67 73.22 73.29 73.40 72.76
TWOFFB(ρ̂mle) 73.02 72.88 73.24 73.18 72.75
TWOFFB(ρ̂ee) 73.15 73.02 73.28 73.12 72.66

Naive 1 53.53 23.20 9.75 4.04 2.06
Naive 2 50.64 21.52 8.91 3.86 1.95
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Table 5: Percentage (%) of selecting the true model using AIC or
Naive cAIC; True model, Setting II: β = (2,3,0,4,0,8,0,1,0)

ᵀ

Method
σv

2 3.5 5 6.5 8
TWOFLL 42.56 41.59 41.99 42.17 42.48

TWOFFB(ρ0) 42.34 42.27 42.26 42.49 42.05
TWOFFB(ρ̂mle) 42.04 41.96 42.05 42.12 42.04
TWOFFB(ρ̂ee) 42.25 42.16 41.37 42.37 42.43

Naive 1 39.20 27.72 18.88 12.18 8.59
Naive 2 41.37 28.32 19.11 12.17 8.64

Naive cAIC 37.11 22.77 14.46 7.71 8.57

Table 6: Percentage (%) of selecting the true model using Mallows’ Cp;
True model, Setting II: β = (2,3,0,4,0,8,0,1,0)

ᵀ

Method
σv

2 3.5 5 6.5 8
TWOFLL 43.83 43.01 43.35 43.49 43.78

TWOFFB(ρ0) 43.78 43.55 43.54 43.74 43.47
TWOFFB(ρ̂mle) 43.44 43.27 43.36 43.51 43.39
TWOFFB(ρ̂ee) 43.77 43.69 43.68 43.85 43.91

Naive 1 40.51 28.20 19.17 12.15 8.67
Naive 2 42.46 28.92 19.35 12.16 8.67


